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VI. On a Spherical Vortez.

By M. J. M. Hir, M. 4., D.Se., Professor of Mathematics at University OOZZege
London.

Commumnicated by Professor Hexrict, F.R.S.
Received January 19,—Read March 1, 1894.

1. IN a paper published by the author in the ¢ Philosophical Transactions’ for 1884,
“On the Motion of Fluid, part of which is moving rotationally and part irrotationally,”
a certain case of motion, symmetrical with regard to an axis, was noticed (see pp.
403-405).

Taking the axis of symmetry as axis of z, and the distance of any point from it as r,
and allowing for a difference of notation, it was shown that the surfaces

kaz + =27 Z) 1> = constant,

where a, ¢ are fixed constants, and Z any arbitrary function of the time, always
contain the same particles of fluid in a possible case of motion.

The surfaces are of invariable form. If the constant be less than — la? the
surfaces are imaginary ; if the constant lie between — Za® and zero they are ring-
shaped ; if the constant be zero, the single surface represented breaks up into an
evanescent cylinder and an ellipsoid of revolution ; if the constant be positive, the
surfaces have the axis of revolution for an asymptote.

The velocity perpendicular to the axis of symmetry is

2L (e — 7);
27
the velocity parallel to the axis of symmetry is
Z-—~(27”9—-a)—2 (4—-Z)2

where  is a fixed constant and Z = dZ/d.
29.7.94
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214 PROFESSOR M. J. M. HILL. ON A SPHERICAL VORTEX.

These expressions (which make the velocity infinitely great at infinity) cannot
apply to a possible case of fluid motion extending to infinity. Hence the fluid moving
in the above manner must be limited by a surface of finite dimensions. This limiting
surface must always contain the same particles of fluid.

Where, as in the present case, the surfaces containing the same particles of fluid
are of invariable form, it is possible to imagine the fluid limited by any one of them,
provided a rigid frictionless boundary having the shape of the limiting surface be
supplied, and the boundary be supposed to move parallel to the axis of z with velocity

Z. Then the above expressions give the velocity components of a possible rotational
motion inside the boundary. So much was pointed out in the paper cited above.

2. But a case of much greater interest is obtained when it is possible to limit the
fluid moving in the above manner by one of the surfaces containing always the same
particles of fluid, and to discover either an irrotational or rotational motion filling all
space external to the limiting surface which is continuous with the motion inside
it as regards velocity normal to the limiting surface and pressure.

3. It is the object of this paper to discuss such a case, the motion found external to
the limiting surface being an irrotational motion, and the tangential velocity at the
limiting surface, as well as the normal velocity, and the pressure being continuous.

The particular surface (containing the same particles) which is selected is obtained by
supposing that the constant vanishes, and also that ¢ = @. Then this surface breaks
up into the evanescent cylinder

and the sphere

The molecular rotation is given by w = 5kr/a?, so that the molecular rotation along
the axis vanishes, and therefore the vortex sphere still possesses to some extent the
character of a vortex ring.

The irrotational motion outside a sphere moving in a straight line is known, and it
is shown in this paper that it will be continuous with the rotational motion inside the
sphere provided a certain relation be satisfied.

This relation may be expressed thus :i—

The cyclic constant of the spherical vortex is five times the product of the radius of
the sphere and the uniform velocity with which the vortex sphere moves along its ais.

The analytic expression of the same relation is

4k = 3%,
This makes

w = 15Z1/(4a?).
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PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX. 215

All the particulars of the motion are placed together in the Table below, in which
the notation employed is as follows :—

If the velocity parallel to the axis of » be 7, and the velocity parallel to the axis of
z be w, then the molecular rotation is given by

or Ow

2(":5;_5;'

Also p is the pressure, p the density, and V the potential of the impressed forces.

The minimum value of p/p 4+ V is II/p, where II/p must be determined from the
initial conditions.

Further R, 6 are such that

r = Rsin f,
z— 7 = Recosé.

The whole motion depends on the following constants :—

(1.) The radius of the sphere, a.
(2.) The uniform velocity with which the vortex sphere moves along

its axis, Z.
(3.) The minimum value of p/p 4+ V, viz, II/p.

Rotational motion inside sphere. At :ﬁ: :;}I;fea;? of Irrotational motion outside sphere.
Velocity parallel to axis of » | 8%Zr (z — Z)[(2¢®). . . . . . . . .| 3%sinoOcos0 . .|3aP%Zr(z — Z)[(2R5)
Velocity parallel to axis of # | Z{5a® — 3 (z — Z)? — 6:2}/(2¢®) . . .| Z(L—3$sin?0) .|d%{3(z: — Z)* — R?}/(2R5)
972 o 1 =
a4 . . . [ %+ {5 —4(a/R)® — (a/R)8
ple+V—=Mp. . . . | 8A[(® — La)?— {(z —7Z)? — a?}® + at] | 272 cos? 0 + & 72 %Zz[% { (afR) (af )}1
+ 3 cos? 0{4 (¢/R)? — (a/R)S} |
Current function . . . .| 8Z2{R®—3a?}/(4e®) . . . . . . .| . . . . . . .| —d?(@2R)
Surfaces containing the | 37%:2{R? — 4?}/(4a?) = comstant. . . .| . . . . . . .|Z® (R? — ¢?)/(2R3) = constant
same particles of fluid
throughout the motion
Velocity potential . . . .| . . . . . .. . . . 00 L — (s — Z)/(2RP)
Molecular rotation. . . .| 15Zr/(4a?) .
Cyclic constant of vortex .| 5aZ . .
Kinetic energy . . . . .| 237patZ%/21. . . . . . . . . . | a3
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216 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

4. If ¢ be not equal to a, then the surface containing the same particles, when the
constant vanishes, breaks up into an evanescent cylinder and an ellipsoid of
revolution.

Now the velocity potential of an ellipsoid moving parallel to an axis is known.
This velocity potential, with a suitable relation between %k and 7, will make the
normal velocity at the surface of the ellipsoid continuous with the normal velocity of
the rotational motion inside the ellipsoid, but it does not make the pressure con-
tinuous. Hence, if fluid can move outside the ellipsoid continuously with the
rotational motion inside (described in section 1 above), then the motion outside the
ellipsoid must be a rotational motion.

5. It cannot be argued that the application of HeLMHOLTZ'S method to determine
the whole motion from the distribution of vortices inside the ellipsoid must determine
an irrotational motion outside the ellipsoid continuous with the rotational motion
inside, because HeLMHOLTZ'S method determines the irrotational motion by means of
the distribution of vortices only when that distribution is known throughout space.
This is not the case in the problem under discussion. For here the rotationally
moving liquid has been arbitrarily limited by rejecting all the vortices outside the
ellipsoid, and it is not known beforehand that the rejection of these vortices is
possible.

6. Yet, on account of the interest of the problem, the paper contains a calculation of
the velocity components in HELMEOLTZ'S manner, supposing the only vortices to be
those inside the ellipsoid, u.e., starting from the values of the velocity components

2k
U ::—c;x(z—Z),

v = 2(;1 y(z— Z),

. 2k k ;
@o:Z—E(2w2+2y2-c&2)——2;};(z—Z)2,

the components of the molecular rotation are first found, viz.:—

4

§ = —70<;L;3+;1§>%

4 1
{ = 0.
Then the potentials L, M, N of distributions of matter of densities ;’f—, l, £
LT 2']7' 27T

respectively throughout the ellipsoid are determined.
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These are, outside the ellipsoid,

: 4 1 ® 72 (z — Z)* du
— 4 = — —_
L= =ttt 5)v[ (1= 35 = S50 Jeraerams
4 1 ® 72 (2 — Z) du
— 1o [ — - — —_
M= QkOLC(a? + cﬂ>m.”E <1 a* 4+ u c‘3+11,>(“2+"'0)2(02+“)1/2’
N =o,

where € is the parameter of the confocal ellipsoid through , v, z.
Then

oN oM _, , /4 1 a
5;_8—3—]6@0<5ﬂ+0>x(z_z)'( (@ + w)* (& + u)¥R >

oL oN 4 10 * du

E—é—x—zka‘% <_(;5+;2’)?/(Z—'7)j‘ (@ + u)® (& + w2

oM oL _ .. (4 1N\ 2 (z— Z) du

Om é:7/——'100“}<0"‘2+ 09>L<1 T @t 62+u>(“2+u)2(c2+u)”2'

To obtain the corresponding expressions inside the ellipsoid, it is necessary to
replace € by zero.

Outside the elhpsmd

the potential function

4 1 ® 7? (#— Z)® duw
10~4e [ L — -— _—
-_— -2—7000 C <“2 + 02> (Z Z) L (1 &+ e+ u > (@ + u) (c® + w)¥R>

OM 0L oN oM oL
a?/ ~ o m dndw by are the differential coefﬁc;ents of

which, with a suitable value of %, gives the potential of the irrotational motion outside

the ellipsoid moving parallel to the axis z with velocity 7.

_ . ..ON oM oL oN oM L
But inside the ellipsoid 3 " % o e’ o oy e not respectively equal to

the values of u, v, w, from which the investigation commenced.

In fact
St
‘@+% ?
.

where P is the potential function
MDCCCXCIV.——A., 2 F
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218 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.
L /4 1\ (° du
— — & kat = (e TN e 2 (o o TN3
[02 ka’ ¢ (az + 02> jo (a2 4 1&)2 (sz + u)sla]{r ('{’ Z) 3 (z Z) }

: (4 1N\ [” du :
+ [Z + 2k — ka'c <;§ + ;5) (0 (@ + u)? (& + 16)1/;2} (" - Z)'

oM oL oON oM oL

7. The expressions oN ~ % cannot be taken by themselves to

oy 0z’ & oa’ ox
represent the velocities inside and outside the ellipsoid, for, though they would
furnish continuous values of the velocities at the surface of the ellipsoid, they would
not make the pressure continuous.

Art. 1. The Equations of Motion.

1f the velocity components of a mass of incompressible fluid at the point x, ¥, 2 be «,
v, w at time ¢; if the pressure be p, the density p, and the potential of the impressed
forces 'V, then the equations of motion are

TR T

b gt a"'__‘a%(%f)& (L)
?+a+a N €1 5
Y

If the motion be symmetrical with regard to the axis of z, let » = (x* 4 4?)*, and
let the velocity perpendicular to the axis and away from it be r.

Then . , .
“;W?«.......Q..(m¢
v = 7y/r .

and the equations of motion become

or , or, ot _ 0 /p bl
Gt rg =5l +Y) | (V)
dw . w . ow D [p v
atra = =u(s+Y) )

o 7 Ow

atrta=0 - - . (V)
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These are equivalent, on elimination of % + V, to

(7 + ot og) [+ -5 )} L),

S+ Srwy=0 . . . . . .. .(VIL)

and

Art. 2. The Equation satisfied by the Current Function.

From equation (VIL) it follows that a function ¢ exists, such that

T = 0Yifoz
Coo o« o . . . (VIL).
W = — oY/or

Substituting in (VI.), it follows that

1 oy © 1oy o\[1 /0 | P 1 og\]__
(Z+i2 2R St W]=0 . . (x)

02 0r® » or

Hence, the whole motion depends on the current function ¢ defined by (IX.).

Art. 8. The Particular Integral selected.

The following is a particular integral of (IX.) :—

M O 1oy 8k 2%
022 ot s or <cc£ 2 >7‘ Coee e (X,
where «a, ¢, k are constants,
A particular integral of (X) is
o [ £/ o 2 k ) 1 :
§=7 {zg(r —@)+ 5= 2SO . . (XL,
where Z and f'(¢) are functions of ¢ only.
Substituting this value of ¢ in (VIIL),
k .
T=2-457r (z — Z),
w= =2 a—Zp—2 L (27 — ) — 27 (1)
- ¢ a? ’ )

2 F 2
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220 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

Art. 4. The Surfaces which contain the same particles of fluid.

The next step is to find the surfaces which contain the same particles of fluid
throughout the motion.
If N = const. be one family of these surfaces,

oA
SHrher=0. L. (XD
Therefore

) [ b=yt 2t er— )+ zf(z:)] —0 (XIIL).

The auxiliary equations for X are

d dr dz (XIV))
g = - ‘ C ),
25 (p—Z)  — 25 (r = AP — 25 (20 — a®) — 2 (1)

™

i i
— 257 (2 —2),

20 + [2—— r(e—Zp 42 (2 — 0&2)} I+ 2 2L pe (-~ 2)d:
—2% (e~ 2) [‘“ + Zf(t)]

B d [72{ (];2 (z — Z)* + —Z:-g (" — o) }.l

— 200 (o — 7) [‘—% + 2f(t)]

Henco if £ (t) = — } % = — 37, one solution of (XIIL) will be

a? ¢

x:m[li LB @)
d
Hence the component velocities

T= 2-5;—7‘ (x— 2Z)
(XVL),

: k
== —— 2— 2_ el /A 2
w=2%—25(2°—=a") =2 (-2 |

belong to a motion in which the surfaces A = const. given by (XV.) contain the same
particles of fluid throughout the motion.
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Also by (XT.)
§ = 7"2[;]% (r* — o) + —c];— (2 — Z)* — %Z] . . . . (XVIL).

Art. 5. The Pressure.

Substituting the above values of = and w in equations (IV.), they become

41 . 3/ . )
—-a‘z—czr(%z—az):-—é;(%-l—\f) !
L g _ - 5 /) i} .. (XVIIL).
L+ e—-2p— S (z—4)= "§<;+V> j
Therefore
P A 21 [ a*\? s 2 472
Lpv=25(r - §> —e—0i-T—zp+ L —zp
+ an arbitrary functionof ¢ . . . . . . (XIX.).
Art. 6. The Molecular Rotation.
If 2w be the molecular rotation,
or ow 8k 2k
o= =5l =+ )
Therefore
4 k
m=<a_2+;2->7~. (XX

Hence the molecular rotation varies as the distance from the axis of symmetry.
The vortex lines are circles, whose centres are on the axis of symmetry, and whose
planes are perpendicular to it.

Art. 7. Further ssmplification of the Particular Integral

Amongst the surfaces given by making A constant in XV., there is one, viz. :—

k7‘2 l'_/’; .I.. g’?:_;gl_‘): — 1} — 0,

a?
which breaks up into the evanescent cylinder

7“2=0..........(XXI.),
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and the ellipsoid of revolution,
e

(2 = Z)°
02

-+ —_1 =0.

a?
If, further, it be supposed that ¢ = «, the ellipsoid becomes the sphere
P+ @E—=ZP=a. . . . . . . . (XXIL).

The discussion will now be limited to this case.
Init ‘

L. .. (XXIIL)

o= L (XXIV),

where II/p is an arbitrary function of ¢.
k < 9 ) > W
= [;; (4 (o= 2 — @) — %z] |
. | b (XXVL).
N = R (2 — L — o) )l

* The surfaces M = const. are a particular case of some surfaces that were noticed by Professor Liams
in a paper “On the Vibrations of an Elastic Sphere,” published in the ‘Proceedings of the London
Mathematical Society,” vol. 13, p. 205.

In equation 75 of that paper, viz.,

v =4 {yn (kr) — ¥, (ka)},
where :
z4

, 22
e =l e

the current function may be written
N2 2 L 2 2 kt 4 4

If we suppose Ck? to be finite, but & = 0, this becomes

C'w? (7% — a?),
or, in the notation of this paper,
Cr2 {2 + (2 — Z)? — o},
which agrees with the above.
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~ Hence, at the surface of the sphere (XXIL.), putting

r= s } .. (XXVIL),

z2—Z =.acosf

7=2ksinfcosd . . . . . . . . . (XXVIIL),
w=7—2ksin®0 . . . . . . . . . (XXIX),
% + V = 2k? cos20+%k2- & coS 02—{- —13— .o (XXX.),

Art. 8. The Irrotational Motion outside the Sphere.

The velocity potential of a sphere of radius a, 1ﬁoving with velocity Z parallel to
the axis of 2, at external points, is

¢=— %z — Z)/(2R®) = — 0®Z cos 0/(2R?) . . . (XXXL),
where

R = 1® 4 (z — Z)

(see BAsser’s ‘ Hydrodynamics,” vol. I., Art. 143).

‘Whence
%‘f;’=3aszo~(z—2)/(235) C ... (XXXIL),
0 .
—a§=a3Z{3(z—Z)2—-R2}/(2R5) .. . . . . . (XXXIIL),

—1{-)’- +V=a[R{(z—Z) % — 7} + 3 (z — Z)° 7/ (2R?)
— "2 [R*+3(x — Zy]/(8R) + T . . . . (XXXIV.),

where T is an arbitrafy function of ¢.
Hence, at a point on the surface of the sphere (XXIL.),

Y —4Zsmbeost . . . . . . . .. (XXXV)
9 VA 3 oin?
5 = (1 —3%sn?6). . . . . . . . . (XXXV_[,),
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224 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

% +V=13acos0Z—57"+2co?0Z +T. . (XXXVIL).

The value of the current function ¢, corresponding to the velocity potential ¢ of
(XXXTI.) is _
Y= —a?Zr*/(2R%) . . . . . . (XXXVIIL).

If N = const. be a family of surfaces containing the same particles of fluid

O\ Lopon 1 0yor

AT e Ty =0 - - . - (XXXIX)

An integral of this equation is
N=y4 L4 L. (XL,

for Z being constant.

N _ W _ o,
at“'éE““EZ(_Z)’
n \p

or +7 Z
a_op

o~ 02’

therefore
O 1opon  1opar
(T i S WS
gz {8~k<a«p+ z) 1 oy

7 » Or oz
= 0.
Hence the surfaces A = const. are
21— 2 = const XLI
5 < - RS) =const. . . . . . . . (XLL).

Art. 9. The Condutions for the continuity of the rotational and irrotational motions.

In order that the motion inside the sphere (XXIIL.) may be continuous with that
outside, the equations (XX VIIL) and (XXXV.) must make 7 = 9¢/or.
- Therefore

ok=2%7 . . . . . . . . . (XLIL).

The equations (XXIX.) and (XXXVI.) must make w = 0¢/0z.
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- This leads again to (XLIL).
The equations (XXX.) and (XXXVIL) must give the same value for p/p + V.
This requires that

and

The first and second of these follow from (XLIL).
The last gives
Hence (XXXIV.) can be written

-%+V=MW@@—@%JWMW)
— a%72[3 (z — Z)® + R¥]/(8R?)

+ 24
‘ p
Therefore

2iyv=17ll5— '_a_‘”'_i"‘} g{ ,&3_i6} o] 1L
,,+V'—SZH5 4(P> (R> +3cos 0] (1-: +4 )47 (XLIL),
Hence at the surface of the sphere

%—+V=%Z'2(900326+»Z—)+% L. (XLIV),

Further, outside the sphere R > @, therefore,

o) = (&)>o
(i) = (w)>o

£+V>F—.
P r

therefore,

Now using the value & = $ Z from (XLIL), putting Z = 0, equations (XXIIL)and
(XXYV.) give inside the sphere
MDCCCXCLV.—A. 2 ¢
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226 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

T = 3/r (z — 7Z)/(2a%)
2w : Z {5&2 -3 (z —_ Z)z — 67‘2}/(2a2)} . (XLV)

Py =% [<¢2 _ ,@?.)2 ~ (=2~ Pt at| 4 1: . (XLVL).

P " Qut i)

Also from (XXVL.)

Y =38Zr[R*—5a*]/(4a®) . . . . . . (XLVIL)
and

N =87 [R* — a?)/(4e®) . . . . . . (XLVIIL).
Also from (XXIV.)

0=15Zr/(de®) . . . . . . . . . . (XLIX).

It may be noted that the value of p/p 4 V given by (XLVI) is least when
(r* — La?)? is least, and {(z — Z)* — ¢*}® is greatest, .e., when 7 = 40® and
z — Z = 0; and then p/p + V = II/p.

Hence IT/p is the minimum value of p/p + V throughout the whole mass of moving
Auid. '
Further, all points on the circle 7 = a/,/2, z = Z represent the surface

| N = — 3Za?/(16);
for this surface is
PR — a®) = —at/d, e, (1P—3a?P 412 (z—Z)=0.

A neighbouring surface is _
(r* — L0P) + 12 (2 — Z) = 2¢*,
where € is small.
Putting
r=7r 4+a.27¢
v =72 + 4

and retaining only the principal terms, it becomes

72 2R

@ T @y =

joroving that the section by a plane through the axis of z is an infinitely small
ellipse, with its major axis double the minor axis, the minor axis being perpendicular
to the direction in which the vortex sphere moves.
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Art. 10. The Cyclic Constant of the Spherical Vortex.

The cyeclic constant of the vortex is

+o LR —22) +a /-2 1 52,,, :
[ edzar =" dz dr
~-a

0 —a 30 20?2
167 [*¢ , .
= (@=Hd
L2 DT
= 42 |P* SJ_U,
= 5OLZ

Hence the cyclic constant of the vortex sphere is equal to five times the radius of
the sphere multiplied by the uniform velocity with which the vortex sphere moves

parallel to its axis.

Art. 11, The Kinetic Energy of the Vortew.

The kinetic energy of the vortex

%+ a vi{w -~ -2p}
= 7p I dz j drr (1* + w?)

Z - 0

Bra  (Yie-G-w 2 [25at — 800 (z — Z) + 9 (z — Z)*
ij dzf{ N [ ( y+9( )

° 4
Z—q 0 4a

wpl? '{ZM dz[{%a‘* — 800 (z — Z)* + 9 (z — Z)*}{a* ~ (z — Z)*}
8at

Zz 7+ .
=T e 1aes — 1700 (s — 2P 4 3 (- — 2)7)

16a* ), _

_ L 17 37
= 5 (= Ylal + FaT

23mplia?
21

The kinetic energy of the irrotational motion outside the vortex is
262

+ 451 (2 — Z)* — 60u™r? + 362

zeo L+ {45 (2 — Z) — 600} {a® — (2 — Z)*}*+ 12 {a? — (z — Z)
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228 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

ij:defdeazgnezﬂ-;w%
= mp r dR g dOR? sin 0" 1‘;6 (3 cos®0 + 1)

aZ? 4 pa’L?

Art. 12. The Distribution of Matter whach would produce the Velocity Potential
of the Irrotational Motion.

The velocity potential — adZ (z — Z)/(2R?) at points outside the sphere is due to a
distribution of matter inside the sphere of density

— 5%z — Z))(8wad). . . . . . . . . (LL),

and the potential of this distribution of matter inside the sphere is

Z(z —Z) {38R* — 502} /(40®) . . . . . . . (LIL).
For
7 (2 — 7Z) (3R? — 50 1B (2 — 2)\
( °+ T 89"+842>< 4a? \+4”<_—‘_8§E2—“’>“0‘ (LIIL).
Further, when R = a
Z(z — Z) {3}_{2 — 5%} )(40%) = — 3Z (2 — ‘L
and .o (LIVL).
- tle - zYeW) = — 46— 5]

Again, when R =«

a[ ZMﬂ%—5Mﬂ 2 e—2))
and r .. (LV)
0 . .
5;[— o’Z (z — 2))(2R?*)] = 7 (z— Z) J
Also when R=«
oz . 4 87 o )
5;[2{6"5 (z —_— Z) (3R“ — 56&2)] == -+ 902 (Z - Z)g 1]
‘d,ﬂd |> ) . . (IJVI.).
% [— A (z — Z)/(2R3) == -+ o (z — A)QJ'
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PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX. 229

The equations (LIV.) show that the potential function in (LIL) is continuous with
the velocity potential of (XXXL) at the surface of the sphere. The equations (LV.)
and (LVI.) show that the differential coefficients are also continuous. Finally (LIII.)
shows that the density of the distribution of matter is that given in (LI.)

Art. 18, Expression of the Velocity Components of the Rotational Motion in
CrEBscH's Form.

Cresscr has proved that the velocity components can be expressed as follows :-—

I N - VII
-T—_ar-l“)\a)" N (A A
ox 0 —
w=24NT L (LVIL)

where
d d 3
\<bw+75;;+w-§g>xzo. L IX)
? d d ,
<5—+T—8-7—’+’w$->,u,=0. e e e e (LX)
0 00N (P v 1 LXI
(G+ra+og)x==(L4V)+i@+w) . . (IXI)

The value of X may be taken as -

377 (RY — a?)/(40?).
(See equation XLVTIIL.)
To find u, there are the equations

dt dr __dz __ dp

T=5==2=% (LXIL)
Therefore
e _ dz _dp |
L7 820z — )26~ Z{ba® — 3(x — L) — 6:2})(2e®) O (LXIIL)
One integral of (LXIIL) is
A = constant,
ne.,
8Z1° {R* — a?}/(40®) = 8ZL/(4¢®) . . . . . (LXIV.),

where L 1s some constant.
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230 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

From (LXIV.) it follows that
r(z—2) =L+ -, . . . . . (LXV)

Substituting in (LXIIIL.)

2 = T e - (LXVL)
Therefore
[ T 25;602 s 5)52 = constant . . . . . (LXVIL)
Henc? ' 7 ’
' ’*ZCU.\/<L+(:;:cﬂu—m_ 555] ... (LXVIIL),

where, after the integration is performed, L must be replaced by »* {R? — «?}.
To determine C, it is necessary to substitute in the equation

or  dw__ Oow  OnO

T H e Ta (LXIX.),

u.e.,
37 ¢ dr
(12r) =52 (z — 4) L,;(;: gy~ O lr (B —a?) 7% [ (E’.ﬁ}%ﬁ'—?«&)m]

37 7
26627 + 20?

37 ‘ T ' dr
- (20 (R} — a?) + 20} |:— Cr*(z — Z) LL T = 7,4)3/2]-

Therefore ‘ . ‘

374 37

0o (7)== 5,370
Therefore

C=5
Hence
dr 157
p=9 IM(L + 2t — ) 2® (LXX.).
Hence
S 157 4 0. 1 o 2 s dr
)\é;— = At pe (Rz —_— 002) [?(2 7__72) - {7' (1\,2 —_— ) + )5} {(L ¥ Pa? — ,,.4)3/2] . (LXXI.)
o _ V5L o g Y S \
)\é; == Z(;g?a« (1{2 — (Lz) |"‘"‘ T (,4 — A) j(L _F-—q,,gdg . ,},4)3/2J . (LXXII)

Therefore
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PROFESSOR M, J. M. HILL, ON A SPHERICAL VORTEX. 231
ox op
> T M or
=5aT7 (z— Z)
157 1 dr ]
_ 3 (P2 — 2| (P2 — o2 31
4'(62 (R a )[7 (7 - Z) (7 (R‘ a ) + 1 3 J’(L + 7’2(112 _ 3,2 (LXXIII )
ox 0
3= W == N p

157 j dr

7 !
=§;5{5@2“3(z— ) ‘3}+ 4 - 4(R2__0L2 (d—Z) m (LXXIV)

Next, dx/ot can be found by means of (LXT.)

% ( +V>+ (2 +w9)—7~j—-wg§

ll

+V)+ 30 +w2>—f(f”g >“”<”x%ﬁ>

(2
(pa)-sern ity
(z47)-

D
LN
L4

11 97 at ; :
N éaa[‘*—*2“2+7:—<Z—Z>”‘+2“2(Z"‘Z)ZJ

(4 w?) —

072 )
— gl (e = Z)]

72
- _ZE [250% — 800® (z — Z)* — 60r°%® + 9 (2 — Z)'+ 36 (z — Z)*r* 4 860%]

3% 157, . dr
+ (R — o) [ — 570 (z — Z) j T e 7“*)3/2] ;
therefore
Ox 1} 109",
at—-“'*p“ gd';[-—'a—%ﬁ — 12 (2 — )]
157274 R?—a®) (z— Z) dr
- 4a? [(L T r%? — )R . (LXXV.)

Next taking U as the potential of the distribution of matter inside the sphere
which would produce the potential of the irrotational motion outside the sphere
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232 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.
U=1Z%(z — Z) {8R? — 50a2}/(4a?)

by equation (LIL.), therefore

%? 4'2(z Zyer . . . . . . . . . . (LXXVL),
ouU 3z , 57, )
Ua = i [2 (z—Z)+ W] — . (LXXVIL),
ou_ 8 572 .
(g,f = i [2 (z — Z)* + R2] + L .. . (LXXVIIL).
Hence o
a(x )] 1 d
= — 5\ [74 (= —7) — {r(R*—a )+ 73}.[@1 T 1%3 — ?4)3/2:] , (LXXIX.),
Oy —U 1 7
o = [ =2 [ 74)3/2} ... (LXXX),
8 - U 1I . o 1 . dr
= _ T VAR [7—_ (e = 2) [ e 7,4)3/2] (LXXXL),
therefore
) H -
S U [ )a]
==\ oy — (R = f~-d“—~ LXXXII
B r(z—7) {7( ua)+75 (L + 7%a® — 74)3% ( XXXIL),
0 I \
= [x — U+ [( 382 dt]
= — 5\ — P —Z o LXXXIIT
= 2 T (z — )_((L_,_?@Q__,,A)w P D),

Slx—v+ [(5+3822)a]

1 iy
= M| 1= ) [y | - - (LXXXIV)
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From (LXXXIIL) and (LXXXIV.) it follows that
2 moo,, . ) g
g[X—U+[<7+%%z2)d¢]= 72 [x U+[< +%%Z2>dt:|.

Hence y — U + ((—? + 29 Z2> dt is a function of r and z — Z only, therefore

se o= U+ sl

N [% — e =2) [ 7‘4)3/2:’ (LXXXY.).
Before proceeding further it is necessary to prove that
j’ dr
(L + 722 — 7952
EE T 7«91«,2 — T4 [ 7 (L + 7dZ( — )R !74 L+ }:f;— R (LXXXVL).

Differentiating both sides with regard to r, an identity is obtained.

Hence the result holds.

Making use of (LXXXVL) in (LXXXII), and remembering that after the
integrations in (LXXXVI.) are effected, L may be replaced by r?* (R?* — a?),

Se-v ey o

— — 5\ 1 r@@—a)+° 0L 4 j’ dr [ Ldr L
- r(z— 7Z) (2 — 7Z) 3 o [ Ft (U e = )BT i (L ek — ! }

L aL d‘? 1
== e 5)\[_ A \/(L + %% — ,,A) - 5;{2L,4 (L + 72 — 744)1/;& —L ’[274(]; T+ %2 — 74)5/2}

157 1 3L ( dr oL dr
T 4a? [_r“ N T L or 12t (L + 7202 — 142 + 2L 57_.( 7 (L 72 — ety 2]

-

laZ 0 dr ;
= 40 o [L.("‘(L+7°‘3a2—144)”2J' <o e (LXXXVIL).

MDCCCXCIV.—A. 2 H
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234 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX,
Also
J_ I 29 72
seonx= U [(5 2]
1 dr
— () — ‘
- 5\ [7,2 ? (A Z) LL + 720 — r@)s/z]
1 1 ( dr Ldr
= — e 2 (g = —_—
5\ [: 2 7 (é Z) {I)qg (L + 72 — 7,4)]/2 + 4& 7'-“(L + 7242 — 7,4)1/2 [7,.4([1 + 722 — 744)3/’2}}
I Y R S
T 402 T O (L + % — 774)1/2 H12 (L + 7%® — 744)3/2
B (R S Y
4a® | 0z Jr* (L + 1%a? — rH)1? O Jrt (L 4 7%a? — 1)1
— 152 0 sz dr ‘—]
4a? Oz (L + r%a? — rt)Y zJ
15Z 9 0 dr ,
= [L [ L 944)1,2}. ... .. . . (LXXXVIL).

Now by (LXXXVIL) and (LXXXVIIL.)

2 ) 57 dr
x=U+[(5 4+ g3 22)ar="00 2] : + const.

prt (L 4 22 — 174)\/:3

Therefore

T . 20a? dr
X=U_§<7+%%Zz>dt+éx2§ !

(L + r%a® — 7.4-)1/2 - const. . (LXXXIX.),

where, after the integration has been performed, L must be replaced by

40°N/(8Z).

Art. 14, The Figure.
The figure has been constructed from the two following tables.
Table 1. gives the form of the surfaces

#.—-,rz(sz — az) = — dt

which are inside the sphere, and which always contain the same particles of fluid
throughout the motion.

#* Tor the time taken by the particles on one of these surfaces to go once completely round, see the
Note at the end of the paper.
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When d* = 1a* the section of the surface, by a plane through the axis, shrinks
into a point ellipse whose major axis, which is parallel to the axis of 2, is double of its
minor axis.

As d* diminishes from a'/4 to 0, the surfaces increase in size until finally they
become merged in the sphere R* — ? = 0, and the evanescent cylinder ? = 0.

Table II. gives the form of the surfaces

{1 — (¢/R}*} = &,

which are outside the sphere, and which always contain the same particles of fluid
throughout the motion.

== ———
- = ’__\\\:"“\\N
B N ]
— 7 (&) ) N T
—// I/( ‘ N a—— 7 )T\\ . \\
S P
e TN 1
\\\ \\&\ V. —-——'-—-\\\ -//,,)/ ,/ a
— N 1 —
N\
I e —— T

When d? = 0, the surface merges in the evanescent cylinder 7? = 0, the sphere
1 — a/R = 0, and the imaginary locus 1 + o/R 4+ (o/R)* = 0.

As d increases from 0 to oo, the surfaces tend to become cylinders. It may be
noticed that the surface 7* {1 — (a/R)’} = d® has the asymptotic cylinder » = d.
The greatest distance of this surface from the axis is found by putting z — Z = 0,
and, therefore, R = ». Hence, the greatest distance is a root of the equation

(2= (2
Ve 7T

When » = 10 « 1s a root of this equation.
2H2
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236 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

1\ 1 a
d =10 a<1 — 1@> =100 (1 — m> nearly = 10 ¢ — 5.

This result shows how rapidly the disturbance due to the passage of the vortex
sphere dies away as the distance from the axis increases.

TasLe I.—Table for calculating the surfaces of revolution 7?(R?* — ) = — d*.
T e .
=1 rla 71
(z—%Z)u 0
4
dt = 33_ rla B8 63 69 75 82
(—Z)a 0 23 24 21 0
4
dt = ‘.‘5 rla 33 55 6 67 8 83 -8
=)o O 19 20 32 22 14 0
1
dt :“6 rla 46 5 6 64 7T 8 8
(z—Z)ja O 99 42 43 41 32 0
dt = at R 36 o4 . . K .Q Y
=3 rla 5 58 7 8 93
(z—Z)a 0 38 b5 58 53 43 0
=2 vl 1113 2 83 4 B 6 7 8 9 05 99
(+—Z)a 0 5 8l 88 87 84 Y8 T 58 42 29 0

3
TasrLe IL—Table for calculating the surfaces of revolution 7° <1 — (»‘i) > = d>

R

B=d*(Cl), rla 103 1 9 8 7 6 5 4 36 34 33 32

(z—2Z)la O 27 53 69 82 94 108 183 16 192 228
F=a(3), rfa 11 105 1 9 8 7 6 37T 56 B

(z—Z)|a 0 37 52 74 94 118 172 228 279 w
B=d(5), rje 117 11 1 9 8 75T

(z—Z)|a © 46 77 104 1446 194w
&=, rle 132518 12 11 1

(z—Z)a O 36 87 142 «

d? = o? (16)7 ')'/a 1-5 14 13 1-26
G—Z)a 0 106 23
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Art. 15. Consideration of the case where the rotationally moving fluid vs limated
by the ellipsovd of revolution

72 2 — 72
L;“+“(—T“l=1-

454 [vad
In this case

TZQ%’}'(Z—Z)

w=217 — '{ZN (297 — a*) — 56]—(4 — Zy
Also
» U2/ @\ . 202 o AR 2
PRASTACEE R R SR R I

+ an arbitrary function of .
Now the velocity potential due to the motion of the ellipsoid,

a? y? =2
R Y

(4% [

moving with velocity Z parallel to the axis of z, is

® du

— P rJ
b=p(z—Z) L @ + WP (1 + )R (@ + wyp?’

where
. * du 2u
Z=p _[O (@ + w)l (0 + w)B (& + w2~ ghe’

and e is the parameter of the confocal ellipsoid through the point z, v, z. See
Basser’s ¢ Hydrodynamics,” vol. 1., Art. 147.

Then if ¢ be the perpendicular from the centre of the ellipsoid on to a tangent
plane, the velocity components at the surfuce are—

0 _ _2w(—17) ¢

0x abe? at

op __  2u(z—7) ¢

dy = aé B

0 2uiz—1) PiE—1) ” du )
e abe® 2 + u jo (@ F R+ w2 (& + wp?’

The normal velocity at the surface is therefore
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238 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

and as

(z

\7
~

+w

is equal to the same expression, it is obvious that the normal velocity is continuous at
the surface of the ellipsoid.
But p/p + V is not continuous.
tor 0 0 0
¢ 3 (9N [0V (0B . 1 of
+ v -|- + 3 <<8@> + <8y) -+ az) = an arbitrary function of ¢,

and since (taking Z constant),

0 . O
o Z oz’
and since, in this case, b = «
ya ? du 20°u, (2 — 7)?
P + V- p J[ o (@ + u) (¢ + w)™? + a?ch
" j du L i Gt “ duw 4g?p? (2 — Z)*
+ (a® + ) (¢* + u)™* aed (@ + u) (@ + u)** ates
= an arbitrary function of ¢.
Therefore
D 20°%u (e — Z)? | * du . . .
% + V4 %*—) {Z — L @+ u) (@ + u)’® + ;/%b} = an arbitrary function of 7.
But
7 — j’“’ du 2p
TR @ T )@+t @’
therefore
2% (3 — 7,
L + V= _Q../‘;%gé__wl_ + an arbitrar y function of ¢.

This value of p/p + V is not continuous with the value of p/p 4+ V inside the
ellipsoid.
Further, on returning to rectangular axes in three dimensions,

I
U= Z—C;x(z—Z),

Q)=2—_g—y(z—Z),

; e , ks
‘LU:Z—Z”(‘]E;(2962—|—2?/2—0;2)-—2 2 (z — Z)~

Hence, it & n, { be the components of the molecular rotation,
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ow ov 47 k
—(ow __ov\__ (A k.
§—2<8y 8ﬁ> <(¢9 + 02>y’
ou ow /4 I
— 1 o
1 _§<8z aac> o + c‘l>m’
o ou
— 1 (=
(=12 <ax 87/) 0.

Now, HeLmmortz's method gives the following values for u, v, w as deduced from

&, ¢,

_ o N oM

T Ty T %
P oL ©oN
"= e T w
o oM oL

where

and L, M, N, are the potentials of §/ 2, 77/ 2, Z/27r respectively, taken throughout the
rotationally moving fluid.

Hence, if the rotationally moving fluid be limited to the ellipsoid of revolution
above, the values of L, M, N may be worked out completely.

For it is known that a solid ellipsoid of density, ux, gives for potential outmde the
ellipsoid,

z? 7? P2 du
(a® 4+ u)"? (0* + u)”z (¢ + u)'®?

37 - . K
pr bex L <1 a® + 0 4w T et

where € is the positive value of \ satisfying

22 N 22
ﬁ+x+m+x+ﬁ+x—L

Inside the ellipsoid the potential has the same value if the lower limit of the
integral, €, be replaced by zero.

(See a paper, by Mr. Dysox, “On the Potentials of Ellipsoids,” in the ¢ Quarterly
Journal of Mathematics,” vol. 25, 1891.)

Hence, outside the ellipsoid,

4 1\ % ® 7? (z — Z)2> du ‘
— (X PN s "
L= <(:c‘3 + 02> g @y L <1 @ + u @+ ) @+ WP (4w’
4 1\ % ® 7% (z — Z)* du
il 4 —_ —
M= ((42 + cz> g aar [e <1 a® + A&+ u ) (@ + w)® (¢ 4- w)'*
N =o0.
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240 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX,
Hence,
%g o 882—4 = ate <% + _032_) #(z=17) f (@ + u)“’dzbc? + u)**?
, %I-:— _ %}j‘ = a'c @;Z; + ;})y(z —7) (w @5 u)zdé FALLE
=y =eeler B (-3 - S e

The values inside the ellipsoid are obt(mned by replacing € by zero.
Outside the ellipsoid the expressions

ON oM _d¢
oy T 0 T

oL _ o _a
0z ox ~ oy
oM _ oL _ %
o oy 0z

where
4% k 2 7?2 (z — Z)* du
=—Llate (5 + 5 )(z— —_ —
¢ = ae (m + ¢ > (z Z>L <1 a® + &+ u > (a® + ) (¢ + u)*?

ag may be immediately verified by differentiation.
¢ is obviously a potential function, viz., it is what

4k * a® i (g —Z) duw
— L ot — — —_ _ — 53
7 4¢ < a® + ) (z—2) L (1 A+uw P+uw Ftu ) (a® + )" (02 4 w)'? (2 4 )P

becomes when ¢ = b.

Moreover, if k£ be suitably determined, it is the velocity potential for the fluid
outside the ellipsoid moving with velocity Z parallel to the axis of 2z (See BAssEr's
“ Hydrodynamics,” vol. I., Art, 147.)

Inside the ellipsoid the values of ON /oy — oM /oz, &c., can be deduced by putting
e =0, and it appears that they do not give the original expressions for u, v, w. ‘

Hence in this case the function P exists. '

It is such that

or | k g {4l & du
=2 w(/—-7)—oac(ag+ 2 )00(/ 7)§ @ T 0@t
P _ & A - du

oy 09y(z_z)—ac<»oﬁ+§‘>y(d_z)fo(cz9+u)‘~’(02+u)3/2
oP - k . k
é;“=z_2};2’(27"2_“2)"2—?(z"'Z)2

— ate (470 n q>r <1 2 (zq—— Z)2> i odu
0

a” c* a? - &+ (a,, + ’lL)’“ ((;2 + “)1/155
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PROFESSOR M. J. M HILL ON A SPHERICAL VORTEX. 241
so that
oP 4% k » du
e O — — oyt I I I " — et -
o = 2 e’ (z—Z)—« c<a2 cz) r(z—7) L (@@ 4 wy (& + w)*
Hence

k koo [ 4 1\~ du i 27,
P = [T — -, a'e <7 + ;—> L’ ((;a:mr:%)‘w] (1 (2 = 2) — 5 (2 — Z)})

&

. 4k % ® du
+ [Z + 2k — a'c (gz + Z§> L (@ + u)? (& + u)m] (== 2),

and P is a potential function, for it satisfies

P 1ob  oP
or? 7 or o2

It appears, then, that on attempting to obtain the values of the velocity com-
ponents from the molecular rotations by means of HELmuoLTZ'S method, it is necessary
to introduce the function P. This points to the existence of rotational motion outside
the ellipsoid (as was previously remarked), P being the potential of the irrotational
motion inside the ellipsoid due to the vortices outside the ellipsoid.

It P be left out of account altogether, and an attempt be made to see whether the
velocity components ON/oy — 6M/0z, 0L/0z — oN Jox, oM /ox — oL/dy, which give con-
tinuous velocity at the surface of the ellipsoid, will not also give continuous pressure ;
then inside the ellipsoid '

4 1 2 du
= kate| = 4+ =) r(z —
T = k(l C <a2 62> ¥ (z Z) ju ((L2 + '1/(/)2 (62 + 1(/)3/9/ .
B 290 (2= 7 du
w = hate (= 4+ - - — e
w = ka'c (“2 2 ) L (1 Pru " Etu >(a2 + w) (¢ + w)l?>

or putting

4 1N\ (” du
e fote (o N e
L= ka C<a2 + 3 > 1y @ 4 w) (& + u)l2>

4 1 ® du
e Freto [ L
m = ka'c pr -+ 09> |, @+ W@ +u)?
4 1\ [* da
O S . o e
n = ka'c < g + 02> 1y @ 4w (& + up
then
r=nr(z — Z4),

w=1{0—2"m — (2 — Z)'n.
MDCUCXCLV.—A., 21
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242 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

Hence the equations

or | or A /p
G e == (L)

p /
become
» a 10
— (7 — ) — 2 = — a( + V>,
r\ p
(e —Z) (1= D)2 e — TP = (fp + V>.
Therefore

l;} +V=dmmrt 4+ Sn(Z =10 4 n(l = Z)(z — ZF — La? (z — Z)*

=+ an arbitrary function of ¢.

This value of p/p 4 V is not continuous with the value of p/p 4+ V for the motion
outside the ellipsoid.

SUMMARY oF REsuLrs.
A. Rotatronal Motion inside the Sphere v + (z — Z)? = o

Velocity parallel to axis of » = 37 (z — Z)/(2a%) ‘ } (XLV.)

Velocity parallel to axis of z = Z {5a? — 3 (z — Z)*— 6r%}/ (2¢%)

DAV= 02 [(0 = L) = (¢ = 2P = P+ o801 L (XLVL)

Current Function ¥ = 8Zr*{R® — & a?} 4y . . . . . . . . . (XLVIL).
Surfaces containing the same particles of fluid

8Zr*{R? — a*}/(4¢®) = const. . . . . . (XLVIIL).

Molecular Rotation = 15Zr/(4a%) . . . . . . . . . . . . . .(XLIX.)

Yyclic Constant of Vortex = 5aZ . . . . . . . . . . . . . . (L)
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PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX. 243

B. On the Surface of the Sphere.

Velocity parallel to axis of r = § Zsnfeos6. . . . . . . . . (XXXV)),

Velocity parallel to axis of z = Z(1—3 sin? o . . . . . . . . (XXXVL).
. 79

—g—- +V=947Z%cos* 6 + 9:} + % .« .« . . (XLIV.).

C. Irrotational Motion outside the Sphere.
Velocity parallel to axis.of r = 303%n (z — Z)J(2R%). . . ST (XXXIL).
Velocity parallel to axis of 2 = a®Z{3 (» — Z)* — R¥}/(2R*) . . . . (XXXIIL).
vl
p L g : |
+m@a%6§-(ﬁ?+%+%;....mmny

Current Function ¢ = — a3Z7*/(2R%) . . . . . . . . . . (XXXVIIL).

Surfaces containing the same particles of fluid
Zr* (R? — a¥)/(2R®) = const. . . . . . . (XLL).

Velocity potential = — &¥Z (z — Z)J@R®) . . . . . . . . . . (XXXL)

SUPPLEMENTARY REMARKS.

The velocity potential outside the sphere is the same as that which would be
produced by the distribution throughout the sphere of matter of density

—15Z(—=2)/(Bwa®) . . . . . . . . (L)
The potential of this distribution inside the sphere is

Z(z - 7)) (3R2— 50&2)/(4042) e e e e (LII.).
212


http://rsta.royalsocietypublishing.org/

A
A
A
) N

[~

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L\

[ Y

/J
A

\

a

a ¥

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

244 PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX.

Calling this potential U, and expressing the velocity components in CrLEBSCH'S
form, viz.,

T=a7+)\

AN
w"az—‘-)\&

where
0
(at -+ T > =0,
<8¢+T +wa> =0,
0 0 0 \
<—a—t- + 75 +'wgz‘>x_—_ -—(% +V/) + 1 (=¥ + w?).
Then )
AN=38ZrR{R*—a?}/(4a®) . . . . . . . . . . . . . (XLVIIL),
dr 15Z
p=5 [ T ra T e (LXX.),
11 20a™\? dr
— | ( a z2>dt + [ = e const, (LXXXIX.),

where L is to be replaced by 4a°\ /(3Z) after the integrations with regard to » have
been performed.

Note ADDED MAY 2ND.

The time taken by the particles on the surface
(R —a*) = — d*
to revolve once completely round is

2
S| et et — ) = 25t /(e — )} dg,

a

or putting
A= 2 (dat — d“")’/z/floﬂ—}- (Lot — d4)}
it is

(2 — )2 !‘ 1 — Asin? ¢) " de.
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PROFESSOR M. J. M. HILL ON A SPHERICAL VORTEX. 245

The extreme limits of d* corresponding to surfaces inside the vortex sphere are to*
and 0, and as d* diminishes from Za* to 0, X increases from 0 to 1.
Putting

F(\) = (2 — ) [%"(1 — \ sin® ) dg,

F(\) = — (2 — \)" [ cos 2 (1 — X sin %¢)= d¢b

= (2 =7 [ o8 2 [(1 =\ cos? ) — (1 — X sin )] ds

Since 0 < ¢ < 4w, every element of the integral is positive.

Hence F’ (\) is positive ; and, therefore, as A increases from 0 to 1, F (\) increases
from 7 to .

Hence as d* diminishes from jfa* to 0, the time of revolution increases from
dom/37 to .

The fact, that when d* = 0, the time is 1nﬁmtely great, may be verified by finding
the time along the axis of the vortex sphere from end to end, and the tlme along a
meridian from one end of the axis to the other.

These are
2a? ‘( o dr=17Z)
32 ) g — (z—2)*°
and

4q [im
3/j cosec 0 d0,

both of which are infinitely great.

This result does not constitute a difficulty, for if a particle anywhere on the axis of
the sphere could reach the extremity then it would not be clear along which meridian
of the sphere it should subsequently move.

If again the particles on any meridian of the sphere could reach the extremity of
the axis, there would at that extremity be a collision of the particles coming in from
all possible meridians.
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